3.6.8 \(\int (a+b \cos (c+d x))^{7/2} \, dx\) [508]

3.6.8.1 Optimal result
3.6.8.2 Mathematica [A] (verified)
3.6.8.3 Rubi [A] (verified)
3.6.8.4 Maple [B] (verified)
3.6.8.5 Fricas [C] (verification not implemented)
3.6.8.6 Sympy [F(-1)]
3.6.8.7 Maxima [F]
3.6.8.8 Giac [F]
3.6.8.9 Mupad [F(-1)]

3.6.8.1 Optimal result

Integrand size = 14, antiderivative size = 246 \[ \int (a+b \cos (c+d x))^{7/2} \, dx=\frac {32 a \left (11 a^2+13 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{105 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 \left (71 a^4-46 a^2 b^2-25 b^4\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{105 d \sqrt {a+b \cos (c+d x)}}+\frac {2 b \left (71 a^2+25 b^2\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{105 d}+\frac {24 a b (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{35 d}+\frac {2 b (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{7 d} \]

output
24/35*a*b*(a+b*cos(d*x+c))^(3/2)*sin(d*x+c)/d+2/7*b*(a+b*cos(d*x+c))^(5/2) 
*sin(d*x+c)/d+2/105*b*(71*a^2+25*b^2)*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/d+ 
32/105*a*(11*a^2+13*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*E 
llipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*(a+b*cos(d*x+c))^(1/2 
)/d/((a+b*cos(d*x+c))/(a+b))^(1/2)-2/105*(71*a^4-46*a^2*b^2-25*b^4)*(cos(1 
/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^( 
1/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/2)/d/(a+b*cos(d*x+c))^(1 
/2)
 
3.6.8.2 Mathematica [A] (verified)

Time = 0.79 (sec) , antiderivative size = 211, normalized size of antiderivative = 0.86 \[ \int (a+b \cos (c+d x))^{7/2} \, dx=\frac {64 a \left (11 a^3+11 a^2 b+13 a b^2+13 b^3\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )-4 \left (71 a^4-46 a^2 b^2-25 b^4\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )+b \left (488 a^3+262 a b^2+b \left (752 a^2+145 b^2\right ) \cos (c+d x)+162 a b^2 \cos (2 (c+d x))+15 b^3 \cos (3 (c+d x))\right ) \sin (c+d x)}{210 d \sqrt {a+b \cos (c+d x)}} \]

input
Integrate[(a + b*Cos[c + d*x])^(7/2),x]
 
output
(64*a*(11*a^3 + 11*a^2*b + 13*a*b^2 + 13*b^3)*Sqrt[(a + b*Cos[c + d*x])/(a 
 + b)]*EllipticE[(c + d*x)/2, (2*b)/(a + b)] - 4*(71*a^4 - 46*a^2*b^2 - 25 
*b^4)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + 
 b)] + b*(488*a^3 + 262*a*b^2 + b*(752*a^2 + 145*b^2)*Cos[c + d*x] + 162*a 
*b^2*Cos[2*(c + d*x)] + 15*b^3*Cos[3*(c + d*x)])*Sin[c + d*x])/(210*d*Sqrt 
[a + b*Cos[c + d*x]])
 
3.6.8.3 Rubi [A] (verified)

Time = 1.33 (sec) , antiderivative size = 257, normalized size of antiderivative = 1.04, number of steps used = 18, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.286, Rules used = {3042, 3135, 27, 3042, 3232, 27, 3042, 3232, 27, 3042, 3231, 3042, 3134, 3042, 3132, 3142, 3042, 3140}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (a+b \cos (c+d x))^{7/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{7/2}dx\)

\(\Big \downarrow \) 3135

\(\displaystyle \frac {2}{7} \int \frac {1}{2} (a+b \cos (c+d x))^{3/2} \left (7 a^2+12 b \cos (c+d x) a+5 b^2\right )dx+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{5/2}}{7 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \int (a+b \cos (c+d x))^{3/2} \left (7 a^2+12 b \cos (c+d x) a+5 b^2\right )dx+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{5/2}}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \int \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2} \left (7 a^2+12 b \sin \left (c+d x+\frac {\pi }{2}\right ) a+5 b^2\right )dx+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{5/2}}{7 d}\)

\(\Big \downarrow \) 3232

\(\displaystyle \frac {1}{7} \left (\frac {2}{5} \int \frac {1}{2} \sqrt {a+b \cos (c+d x)} \left (a \left (35 a^2+61 b^2\right )+b \left (71 a^2+25 b^2\right ) \cos (c+d x)\right )dx+\frac {24 a b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{5 d}\right )+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{5/2}}{7 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \int \sqrt {a+b \cos (c+d x)} \left (a \left (35 a^2+61 b^2\right )+b \left (71 a^2+25 b^2\right ) \cos (c+d x)\right )dx+\frac {24 a b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{5 d}\right )+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{5/2}}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \int \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )} \left (a \left (35 a^2+61 b^2\right )+b \left (71 a^2+25 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx+\frac {24 a b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{5 d}\right )+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{5/2}}{7 d}\)

\(\Big \downarrow \) 3232

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (\frac {2}{3} \int \frac {105 a^4+254 b^2 a^2+16 b \left (11 a^2+13 b^2\right ) \cos (c+d x) a+25 b^4}{2 \sqrt {a+b \cos (c+d x)}}dx+\frac {2 b \left (71 a^2+25 b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d}\right )+\frac {24 a b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{5 d}\right )+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{5/2}}{7 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (\frac {1}{3} \int \frac {105 a^4+254 b^2 a^2+16 b \left (11 a^2+13 b^2\right ) \cos (c+d x) a+25 b^4}{\sqrt {a+b \cos (c+d x)}}dx+\frac {2 b \left (71 a^2+25 b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d}\right )+\frac {24 a b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{5 d}\right )+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{5/2}}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (\frac {1}{3} \int \frac {105 a^4+254 b^2 a^2+16 b \left (11 a^2+13 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right ) a+25 b^4}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 b \left (71 a^2+25 b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d}\right )+\frac {24 a b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{5 d}\right )+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{5/2}}{7 d}\)

\(\Big \downarrow \) 3231

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (\frac {1}{3} \left (16 a \left (11 a^2+13 b^2\right ) \int \sqrt {a+b \cos (c+d x)}dx-\left (71 a^4-46 a^2 b^2-25 b^4\right ) \int \frac {1}{\sqrt {a+b \cos (c+d x)}}dx\right )+\frac {2 b \left (71 a^2+25 b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d}\right )+\frac {24 a b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{5 d}\right )+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{5/2}}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (\frac {1}{3} \left (16 a \left (11 a^2+13 b^2\right ) \int \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx-\left (71 a^4-46 a^2 b^2-25 b^4\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 b \left (71 a^2+25 b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d}\right )+\frac {24 a b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{5 d}\right )+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{5/2}}{7 d}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (\frac {1}{3} \left (\frac {16 a \left (11 a^2+13 b^2\right ) \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}dx}{\sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\left (71 a^4-46 a^2 b^2-25 b^4\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 b \left (71 a^2+25 b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d}\right )+\frac {24 a b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{5 d}\right )+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{5/2}}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (\frac {1}{3} \left (\frac {16 a \left (11 a^2+13 b^2\right ) \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}dx}{\sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\left (71 a^4-46 a^2 b^2-25 b^4\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 b \left (71 a^2+25 b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d}\right )+\frac {24 a b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{5 d}\right )+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{5/2}}{7 d}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (\frac {1}{3} \left (\frac {32 a \left (11 a^2+13 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\left (71 a^4-46 a^2 b^2-25 b^4\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 b \left (71 a^2+25 b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d}\right )+\frac {24 a b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{5 d}\right )+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{5/2}}{7 d}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (\frac {1}{3} \left (\frac {32 a \left (11 a^2+13 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {\left (71 a^4-46 a^2 b^2-25 b^4\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}\right )+\frac {2 b \left (71 a^2+25 b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d}\right )+\frac {24 a b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{5 d}\right )+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{5/2}}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (\frac {1}{3} \left (\frac {32 a \left (11 a^2+13 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {\left (71 a^4-46 a^2 b^2-25 b^4\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}\right )+\frac {2 b \left (71 a^2+25 b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d}\right )+\frac {24 a b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{5 d}\right )+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{5/2}}{7 d}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (\frac {2 b \left (71 a^2+25 b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d}+\frac {1}{3} \left (\frac {32 a \left (11 a^2+13 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 \left (71 a^4-46 a^2 b^2-25 b^4\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}\right )\right )+\frac {24 a b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{5 d}\right )+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{5/2}}{7 d}\)

input
Int[(a + b*Cos[c + d*x])^(7/2),x]
 
output
(2*b*(a + b*Cos[c + d*x])^(5/2)*Sin[c + d*x])/(7*d) + ((24*a*b*(a + b*Cos[ 
c + d*x])^(3/2)*Sin[c + d*x])/(5*d) + (((32*a*(11*a^2 + 13*b^2)*Sqrt[a + b 
*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[(a + b*Cos[c 
 + d*x])/(a + b)]) - (2*(71*a^4 - 46*a^2*b^2 - 25*b^4)*Sqrt[(a + b*Cos[c + 
 d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[a + b*Cos[c 
 + d*x]]))/3 + (2*b*(71*a^2 + 25*b^2)*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x 
])/(3*d))/5)/7
 

3.6.8.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3135
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos 
[c + d*x]*((a + b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[1/n   Int[(a + b* 
Sin[c + d*x])^(n - 2)*Simp[a^2*n + b^2*(n - 1) + a*b*(2*n - 1)*Sin[c + d*x] 
, x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 1] && 
 IntegerQ[2*n]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3231
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + ( 
f_.)*(x_)]], x_Symbol] :> Simp[(b*c - a*d)/b   Int[1/Sqrt[a + b*Sin[e + f*x 
]], x], x] + Simp[d/b   Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b 
, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 

rule 3232
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[(-d)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/( 
f*(m + 1))), x] + Simp[1/(m + 1)   Int[(a + b*Sin[e + f*x])^(m - 1)*Simp[b* 
d*m + a*c*(m + 1) + (a*d*m + b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ 
[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 
 0] && IntegerQ[2*m]
 
3.6.8.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(823\) vs. \(2(280)=560\).

Time = 7.40 (sec) , antiderivative size = 824, normalized size of antiderivative = 3.35

method result size
default \(\text {Expression too large to display}\) \(824\)

input
int((a+cos(d*x+c)*b)^(7/2),x,method=_RETURNVERBOSE)
 
output
-2/105*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(240*co 
s(1/2*d*x+1/2*c)^9*b^4+648*cos(1/2*d*x+1/2*c)^7*a*b^3-600*cos(1/2*d*x+1/2* 
c)^7*b^4+752*cos(1/2*d*x+1/2*c)^5*a^2*b^2-1296*cos(1/2*d*x+1/2*c)^5*a*b^3+ 
640*cos(1/2*d*x+1/2*c)^5*b^4+244*cos(1/2*d*x+1/2*c)^3*a^3*b-1128*cos(1/2*d 
*x+1/2*c)^3*a^2*b^2+860*cos(1/2*d*x+1/2*c)^3*a*b^3-360*cos(1/2*d*x+1/2*c)^ 
3*b^4-71*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b 
))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^4+46*(sin(1/2* 
d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)*EllipticF 
(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2*b^2+25*(sin(1/2*d*x+1/2*c)^2)^ 
(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1 
/2*c),(-2*b/(a-b))^(1/2))*b^4+176*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1 
/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b) 
)^(1/2))*a^4-176*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a 
-b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^3*b+20 
8*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2 
)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2*b^2-208*(sin(1/2*d* 
x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)*EllipticE(c 
os(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b^3-244*cos(1/2*d*x+1/2*c)*a^3*b+3 
76*cos(1/2*d*x+1/2*c)*a^2*b^2-212*cos(1/2*d*x+1/2*c)*a*b^3+80*cos(1/2*d*x+ 
1/2*c)*b^4)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2...
 
3.6.8.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.13 (sec) , antiderivative size = 474, normalized size of antiderivative = 1.93 \[ \int (a+b \cos (c+d x))^{7/2} \, dx=\frac {\sqrt {2} {\left (37 i \, a^{4} - 346 i \, a^{2} b^{2} - 75 i \, b^{4}\right )} \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right ) + \sqrt {2} {\left (-37 i \, a^{4} + 346 i \, a^{2} b^{2} + 75 i \, b^{4}\right )} \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right ) - 48 \, \sqrt {2} {\left (-11 i \, a^{3} b - 13 i \, a b^{3}\right )} \sqrt {b} {\rm weierstrassZeta}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right ) - 48 \, \sqrt {2} {\left (11 i \, a^{3} b + 13 i \, a b^{3}\right )} \sqrt {b} {\rm weierstrassZeta}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right ) + 6 \, {\left (15 \, b^{4} \cos \left (d x + c\right )^{2} + 66 \, a b^{3} \cos \left (d x + c\right ) + 122 \, a^{2} b^{2} + 25 \, b^{4}\right )} \sqrt {b \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{315 \, b d} \]

input
integrate((a+b*cos(d*x+c))^(7/2),x, algorithm="fricas")
 
output
1/315*(sqrt(2)*(37*I*a^4 - 346*I*a^2*b^2 - 75*I*b^4)*sqrt(b)*weierstrassPI 
nverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos( 
d*x + c) + 3*I*b*sin(d*x + c) + 2*a)/b) + sqrt(2)*(-37*I*a^4 + 346*I*a^2*b 
^2 + 75*I*b^4)*sqrt(b)*weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27* 
(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + c) + 2*a)/b 
) - 48*sqrt(2)*(-11*I*a^3*b - 13*I*a*b^3)*sqrt(b)*weierstrassZeta(4/3*(4*a 
^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, weierstrassPInverse(4/3*(4*a 
^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I* 
b*sin(d*x + c) + 2*a)/b)) - 48*sqrt(2)*(11*I*a^3*b + 13*I*a*b^3)*sqrt(b)*w 
eierstrassZeta(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, weier 
strassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*( 
3*b*cos(d*x + c) - 3*I*b*sin(d*x + c) + 2*a)/b)) + 6*(15*b^4*cos(d*x + c)^ 
2 + 66*a*b^3*cos(d*x + c) + 122*a^2*b^2 + 25*b^4)*sqrt(b*cos(d*x + c) + a) 
*sin(d*x + c))/(b*d)
 
3.6.8.6 Sympy [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^{7/2} \, dx=\text {Timed out} \]

input
integrate((a+b*cos(d*x+c))**(7/2),x)
 
output
Timed out
 
3.6.8.7 Maxima [F]

\[ \int (a+b \cos (c+d x))^{7/2} \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {7}{2}} \,d x } \]

input
integrate((a+b*cos(d*x+c))^(7/2),x, algorithm="maxima")
 
output
integrate((b*cos(d*x + c) + a)^(7/2), x)
 
3.6.8.8 Giac [F]

\[ \int (a+b \cos (c+d x))^{7/2} \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {7}{2}} \,d x } \]

input
integrate((a+b*cos(d*x+c))^(7/2),x, algorithm="giac")
 
output
integrate((b*cos(d*x + c) + a)^(7/2), x)
 
3.6.8.9 Mupad [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^{7/2} \, dx=\int {\left (a+b\,\cos \left (c+d\,x\right )\right )}^{7/2} \,d x \]

input
int((a + b*cos(c + d*x))^(7/2),x)
 
output
int((a + b*cos(c + d*x))^(7/2), x)